Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 37
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
arxiv; 2024.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2403.15291v1

Résumé

The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology (WBE) for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding WBE for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.


Sujets)
COVID-19 , Maladies transmissibles
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.10.26.23297581

Résumé

ImportanceCOVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. ObjectiveTo project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). DesignThe COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. SettingThe entire United States. ParticipantsNone. ExposureAnnually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measuresEnsemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. ResultsFrom April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and RelevanceCOVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease. Key pointsO_ST_ABSQuestionC_ST_ABSWhat is the likely impact of COVID-19 from April 2023-April 2025 and to what extent can vaccination reduce hospitalizations and deaths? FindingsUnder plausible assumptions about viral evolution and waning immunity, COVID-19 will likely cause annual epidemics peaking in November-January over the two-year projection period. Though significant, hospitalizations and deaths are unlikely to reach levels seen in previous winters. The projected health impacts of COVID-19 are reduced by 10-20% through moderate use of reformulated vaccines. MeaningCOVID-19 is projected to remain a significant public health threat. Annual vaccination can reduce morbidity, mortality, and strain on health systems.


Sujets)
COVID-19
3.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.06.28.23291998

Résumé

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.


Sujets)
COVID-19
4.
Velma Lopez; Estee Y Cramer; Robert Pagano; John M Drake; Eamon B O'Dea; Benjamin P Linas; Turgay Ayer; Jade Xiao; Madeline Adee; Jagpreet Chhatwal; Mary A Ladd; Peter P Mueller; Ozden O Dalgic; Johannes Bracher; Tilmann Gneiting; Anja Mühlemann; Jarad Niemi; Ray L Evan; Martha Zorn; Yuxin Huang; Yijin Wang; Aaron Gerding; Ariane Stark; Dasuni Jayawardena; Khoa Le; Nutcha Wattanachit; Abdul H Kanji; Alvaro J Castro Rivadeneira; Sen Pei; Jeffrey Shaman; Teresa K Yamana; Xinyi Li; Guannan Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Lily Wang; Yueying Wang; Shan Yu; Daniel J Wilson; Samuel R Tarasewicz; Brad Suchoski; Steve Stage; Heidi Gurung; Sid Baccam; Maximilian Marshall; Lauren Gardner; Sonia Jindal; Kristen Nixon; Joseph C Lemaitre; Juan Dent; Alison L Hill; Joshua Kaminsky; Elizabeth C Lee; Justin Lessler; Claire P Smith; Shaun Truelove; Matt Kinsey; Katharine Tallaksen; Shelby Wilson; Luke C Mullany; Lauren Shin; Kaitlin Rainwater-Lovett; Dean Karlen; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dave Osthus; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Xinyue Xiong; Ana Pastore y Piontti; Shun Zheng; Zhifeng Gao; Wei Cao; Jiang Bian; Chaozhuo Li; Xing Xie; Tie-Yan Liu; Juan Lavista Ferres; Shun Zhang; Robert Walraven; Jinghui Chen; Quanquan Gu; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Graham Casey Gibson; Daniel Sheldon; Ajitesh Srivastava; Aniruddha Adiga; Benjamin Hurt; Gursharn Kaur; Bryan Lewis; Madhav Marathe; Akhil S Peddireddy; Przemyslaw Porebski; Srinivasan Venkatramanan; Lijing Wang; Pragati V Prasad; Alexander E Webber; Jo W Walker; Rachel B Slayton; Matthew Biggerstaff; Nicholas G Reich; Michael A Johansson.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.05.30.23290732

Résumé

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naive baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. Author SummaryAs SARS-CoV-2 began to spread throughout the world in early 2020, modelers played a critical role in predicting how the epidemic could take shape. Short-term forecasts of epidemic outcomes (for example, infections, cases, hospitalizations, or deaths) provided useful information to support pandemic planning, resource allocation, and intervention. Yet, infectious disease forecasting is still a nascent science, and the reliability of different types of forecasts is unclear. We retrospectively evaluated COVID-19 case forecasts, which were often unreliable. For example, forecasts did not anticipate the speed of increase in cases in early winter 2020. This analysis provides insights on specific problems that could be addressed in future research to improve forecasts and their use. Identifying the strengths and weaknesses of forecasts is critical to improving forecasting for current and future public health responses.


Sujets)
COVID-19 , Mort , Maladies transmissibles
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.10.12.22280997

Résumé

Responding to a rapidly evolving pandemic like COVID-19 is challenging, and involves anticipating novel variants, vaccine uptake, and behavioral adaptations. Human judgment systems can complement computational models by providing valuable real-time forecasts. We report findings from a study conducted on Metaculus, a community forecasting platform, in partnership with the Virginia Department of Health, involving six rounds of forecasting during the Omicron BA.1 wave in the United States from November 2021 to March 2022. We received 8355 probabilistic predictions from 129 unique users across 60 questions pertaining to cases, hospitalizations, vaccine uptake, and peak/trough activity. We observed that the case forecasts performed on par with national multi-model ensembles and the vaccine uptake forecasts were more robust and accurate compared to baseline models. We also identified qualitative shifts in Omicron BA.1 wave prognosis during the surge phase, demonstrating rapid adaptation of such systems. Finally, we found that community estimates of variant characteristics such as growth rate and timing of dominance were in line with the scientific consensus. The observed accuracy, timeliness, and scope of such systems demonstrates the value of incorporating them into pandemic policymaking workflows.


Sujets)
COVID-19
6.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2124598.v1

Résumé

In response to COVID-19, many countries have mandated social distancing and banned large group gatherings in order to slow down the spread of SARS-CoV-2. These social interventions along with vaccines remain the best way forward to reduce the spread of SARS CoV-2. In order to increase vaccine accessibility, states such as Virginia have deployed mobile vaccination centers to distribute vaccines across the state. When choosing where to place these sites, there are two important factors to take into account: accessibility and equity. We formulate a combinatorial problem that captures these factors and then develop efficient algorithms with theoretical guarantees on both of these aspects. Furthermore, we study the inherent hardness of the problem, and demonstrate strong impossibility results. Finally, we run computational experiments on real-world data to show the efficacy of our methods.


Sujets)
COVID-19
7.
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.16.22276024

Résumé

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. Results: Over 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks.


Sujets)
COVID-19 , Mort , Maladies transmissibles
8.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.08.22271905

Résumé

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.


Sujets)
COVID-19
9.
arxiv; 2022.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2202.04705v1

Résumé

In response to COVID-19, many countries have mandated social distancing and banned large group gatherings in order to slow down the spread of SARS-CoV-2. These social interventions along with vaccines remain the best way forward to reduce the spread of SARS CoV-2. In order to increase vaccine accessibility, states such as Virginia have deployed mobile vaccination centers to distribute vaccines across the state. When choosing where to place these sites, there are two important factors to take into account: accessibility and equity. We formulate a combinatorial problem that captures these factors and then develop efficient algorithms with theoretical guarantees on both of these aspects. Furthermore, we study the inherent hardness of the problem, and demonstrate strong impossibility results. Finally, we run computational experiments on real-world data to show the efficacy of our methods.


Sujets)
COVID-19
10.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.26.22269903

Résumé

Karnataka imposed weeknight and weekend curfews to mitigate the spread of the Omicron variant of SARS-CoV-2. We attempt to assess the impact of curfew using community mobility reports published by Google. Then, we quantify the impact of such restrictions via a simulation study. The pattern of weeknight and weekend curfew, followed by relaxations during the weekdays, seems, at best, to slow and delay the Omicron spread. The simulation outcomes suggest that Omicron eventually spreads and affects nearly as much of the population as it would have without the restrictions. Further, if Karnataka cases trajectory follows the South African Omicron wave trend and the hospitalisation is similar to that observed in well-vaccinated countries (2% of the confirmed cases), then the healthcare requirement is likely within the capacity of Bengaluru Urban when the caseload peaks, with or without the mobility restrictions. On the other hand, if Karnataka cases trajectory follows both the South African Omicron wave trend and the hospitalisation requirement observed there (6.9%), then the healthcare capacity may be exceeded at peak, with or without the mobility restrictions.

11.
arxiv; 2021.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2112.15547v2

Résumé

Efficient contact tracing and isolation is an effective strategy to control epidemics. It was used effectively during the Ebola epidemic and successfully implemented in several parts of the world during the ongoing COVID-19 pandemic. An important consideration in contact tracing is the budget on the number of individuals asked to quarantine -- the budget is limited for socioeconomic reasons. In this paper, we present a Markov Decision Process (MDP) framework to formulate the problem of using contact tracing to reduce the size of an outbreak while asking a limited number of people to quarantine. We formulate each step of the MDP as a combinatorial problem, MinExposed, which we demonstrate is NP-Hard; as a result, we develop an LP-based approximation algorithm. Though this algorithm directly solves MinExposed, it is often impractical in the real world due to information constraints. To this end, we develop a greedy approach based on insights from the analysis of the previous algorithm, which we show is more interpretable. A key feature of the greedy algorithm is that it does not need complete information of the underlying social contact network. This makes the heuristic implementable in practice and is an important consideration. Finally, we carry out experiments on simulations of the MDP run on real-world networks, and show how the algorithms can help in bending the epidemic curve while limiting the number of isolated individuals. Our experimental results demonstrate that the greedy algorithm and its variants are especially effective, robust, and practical in a variety of realistic scenarios, such as when the contact graph and specific transmission probabilities are not known. All code can be found in our GitHub repository: https://github.com/gzli929/ContactTracing.


Sujets)
COVID-19
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.15.21267736

Résumé

A bstract The deployment of vaccines across the US provides significant defense against serious illness and death from COVID-19. Over 70% of vaccine-eligible Americans are at least partially vaccinated, but there are pockets of the population that are under-vaccinated, such as in rural areas and some demographic groups (e.g. age, race, ethnicity). These unvaccinated pockets are extremely susceptible to the Delta variant, exacerbating the healthcare crisis and increasing the risk of new variants. In this paper, we describe a data-driven model that provides real-time support to Virginia public health officials by recommending mobile vaccination site placement in order to target under-vaccinated populations. Our strategy uses fine-grained mobility data, along with US Census and vaccination uptake data, to identify locations that are most likely to be visited by unvaccinated individuals. We further extend our model to choose locations that maximize vaccine uptake among hesitant groups. We show that the top recommended sites vary substantially across some demographics, demonstrating the value of developing customized recommendation models that integrate fine-grained, heterogeneous data sources. In addition, we used a statistically equivalent Synthetic Population to study the effect of combined demographics (eg, people of a particular race and age), which is not possible using US Census data alone. We validate our recommendations by analyzing the success rates of deployed vaccine sites, and show that sites placed closer to our recommended areas administered higher numbers of doses. Our model is the first of its kind to consider evolving mobility patterns in real-time for suggesting placement strategies customized for different targeted demographic groups. Our results will be presented at IAAI-22, but given the critical nature of the pandemic, we offer this extended version of that paper for more timely consideration of our approach and to cover additional findings.


Sujets)
COVID-19
13.
arxiv; 2021.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2112.08279v1

Résumé

Beginning in April 2020, we gathered partial county-level data on non-pharmaceutical interventions (NPIs) implemented in response to the COVID-19 pandemic in the United States, using both volunteer and paid crowdsourcing. In this report, we document the data collection process and summarize our results, to increase the utility of our open data and inform the design of future rapid crowdsourcing data collection efforts.


Sujets)
COVID-19
14.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.28.21262748

Résumé

What is already known about this topic?The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July--December 2021. What is added by this report?Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July--December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. What are the implications for public health practice?Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.


Sujets)
COVID-19 , Mort
15.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.01.21259851

Résumé

Tracking the COVID-19 pandemic has been a major challenge for policy makers. Although, several efforts are ongoing for accurate forecasting of cases, deaths, and hospitalization at various resolutions, few have been attempted for college campuses despite their potential to become COVID-19 hot-spots. In this paper, we present a real-time effort towards weekly forecasting of campus-level cases during the fall semester for four universities in Virginia, United States. We discuss the challenges related to data curation. A causal model is employed for forecasting with one free time-varying parameter, calibrated against case data. The model is then run forward in time to obtain multiple forecasts. We retrospectively evaluate the performance and, while forecast quality suffers during the campus reopening phase, the model makes reasonable forecasts as the fall semester progresses. We provide sensitivity analysis for the several model parameters. In addition, the forecasts are provided weekly to various state and local agencies.


Sujets)
COVID-19
16.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.07.21258492

Résumé

A bstract High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such a mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ODE based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We subsequently evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and 87% F1-score.


Sujets)
COVID-19 , Maladies transmissibles
17.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21257836

Résumé

COVID-19 vaccination is being rolled out among the general population in India. Spatial heterogeneities exist in seroprevalence and active infections across India. Using a spatially explicit age-stratified model of Karnataka at the district level, we study three spatial vaccination allocation strategies under different vaccination capacities and a variety of non-pharmaceutical intervention (NPI) scenarios. The models are initialised using on-the-ground datasets that capture reported cases, seroprevalence estimates, seroreversion and vaccine rollout plans. The three vaccination strategies we consider are allocation in proportion to the district populations, allocation in inverse proportion to the seroprevalence estimates, and allocation in proportion to the case-incidence rates during a reference period. The results suggest that the effectiveness of these strategies (in terms of cumulative cases at the end of a four-month horizon) are within 2% of each other, with allocation in proportion to population doing marginally better at the state level. The results suggest that the allocation schemes are robust and thus the focus should be on the easy to implement scheme based on population. Our immunity waning model predicts the possibility of a subsequent resurgence even under relatively strong NPIs. Finally, given a per-day vaccination capacity, our results suggest the level of NPIs needed for the healthcare infrastructure to handle a surge.


Sujets)
COVID-19
18.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.20.21254022

Résumé

ABSTRACT Social distancing measures, such as restricting occupancy at venues, have been a primary intervention for controlling the spread of COVID-19. However, these mobility restrictions place a significant economic burden on individuals and businesses. To balance these competing demands, policymakers need analytical tools to assess the costs and benefits of different mobility reduction measures.In this paper, we present our work motivated by our interactions with the Virginia Department of Health on a decision-support tool that utilizes large-scale data and epidemiological modeling to quantify the impact of changes in mobility on infection rates. Our model captures the spread of COVID-19 by using a fine-grained, dynamic mobility network that encodes the hourly movements of people from neighborhoods to individual places, with over 3 billion hourly edges. By perturbing the mobility network, we can simulate a wide variety of reopening plans and forecast their impact in terms of new infections and the loss in visits per sector. To deploy this model in practice, we built a robust computational infrastructure to support running millions of model realizations, and we worked with policymakers to develop an intuitive dashboard interface that communicates our model’s predictions for thousands of potential policies, tailored to their jurisdiction. The resulting decision-support environment provides policymakers with much-needed analytical machinery to assess the tradeoffs between future infections and mobility restrictions.


Sujets)
COVID-19
19.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.12.21253495

Résumé

ABSTRACT Timely, high-resolution forecasts of infectious disease incidence are useful for policy makers in deciding intervention measures and estimating healthcare resource burden. In this paper, we consider the task of forecasting COVID-19 confirmed cases at the county level for the United States. Although multiple methods have been explored for this task, their performance has varied across space and time due to noisy data and the inherent dynamic nature of the pandemic. We present a forecasting pipeline which incorporates probabilistic forecasts from multiple statistical, machine learning and mechanistic methods through a Bayesian ensembling scheme, and has been operational for nearly 6 months serving local, state and federal policymakers in the United States. While showing that the Bayesian ensemble is at least as good as the individual methods, we also show that each individual method contributes significantly for different spatial regions and time points. We compare our model’s performance with other similar models being integrated into CDC-initiated COVID-19 Forecast Hub, and show better performance at longer forecast horizons. Finally, we also describe how such forecasts are used to increase lead time for training mechanistic scenario projections. Our work demonstrates that such a real-time high resolution forecasting pipeline can be developed by integrating multiple methods within a performance-based ensemble to support pandemic response. ACM Reference Format Aniruddha Adiga, Lijing Wang, Benjamin Hurt, Akhil Peddireddy, Przemys-law Porebski,, Srinivasan Venkatramanan, Bryan Lewis, Madhav Marathe. 2021. All Models Are Useful: Bayesian Ensembling for Robust High Resolution COVID-19 Forecasting. In Proceedings of ACM Conference (Conference’17) . ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn


Sujets)
COVID-19 , Maladies transmissibles
20.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.23.21252325

Résumé

The COVID-19 global outbreak represents the most significant epidemic event since the 1918 influenza pandemic. Simulations have played a crucial role in supporting COVID-19 planning and response efforts. Developing scalable workflows to provide policymakers quick responses to important questions pertaining to logistics, resource allocation, epidemic forecasts and intervention analysis remains a challenging computational problem. In this work, we present scalable high performance computing-enabled workflows for COVID-19 pandemic planning and response. The scalability of our methodology allows us to run fine-grained simulations daily, and to generate county-level forecasts and other counter-factual analysis for each of the 50 states (and DC), 3140 counties across the USA. Our workflows use a hybrid cloud/cluster system utilizing a combination of local and remote cluster computing facilities, and using over 20,000 CPU cores running for 6–9 hours every day to meet this objective. Our state (Virginia), state hospital network, our university, the DOD and the CDC use our models to guide their COVID-19 planning and response efforts. We began executing these pipelines March 25, 2020, and have delivered and briefed weekly updates to these stakeholders for over 30 weeks without interruption.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche